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Discrete Random Variable
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 X is a discrete random variable if it has a countable support.

 Recall that countable sets include finites set and countably

infinite sets.

 For X whose support is uncountable, there are two types:

 Continuous random variable

 Mixed random variable



Probabilities involving discrete RV
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 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

     
1

1 2 6
6

P X P X P X      

𝒙 𝑷 𝑿 = 𝒙

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 

variable

 Probability mass function 

(PMF):

 In general,

 Stem plot:

 
1/ 6, 1,2,3,4,5,6,

0, otherwise.
X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 



Probabilities involving discrete RV

4

To find P[some condition(s) on X] 
from the pmf pX(x) of X:

1. Find the support of X.

2. Look only at values x inside the 
support. 
Find all x that satisfies the 
condition(s).

3. Evaluate the pmf at x found in 
the previous step.

4. Add the pmf values from the 
previous step.

Back to the dice roll 
example. Suppose we want 
to find P[X > 4].

1. The support of X is
{1,2,3,4,5,6}.

2. The members which 
satisfies the condition 
“>4” is 5 and 6.

3. The pmf values at 5 
and 6 are all 1/6.

4. Adding the pmf values 
gives 2/6 = 1/3.



Probabilities involving discrete RV

5

 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

     
1

1 2 6
6

P X P X P X      

𝒙 𝑷 𝑿 = 𝒙

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 

variable

 Probability mass function 

(PMF):

 In general,

 Stem plot:

 
1/ 6, 1,2,3,4,5,6,

0, otherwise.
X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 



X  Uniform({1,2,…,6}) 
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Roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Generate X 200 times. Put the 

results in a table of size 2010



randi function
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 Generate uniformly distributed pseudorandom integers

 randi(imax) returns a scalar value between 1 and 
imax. 

 randi(imax,m,n) and randi(imax,[m,n])
return an m-by-n matrix containing pseudorandom integer 
values drawn from the discrete uniform distribution on the 
interval [1,imax]. 

 randi(imax) is the same as randi(imax,1).

 randi([imin,imax],...) returns an array 
containing integer values drawn from the discrete uniform 
distribution on the interval [imin,imax]. 

We have already seen the rand and randn functions.



hist function
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 Create histogram plot

 hist(data) creates a histogram bar plot of data.  

 Elements in data are sorted into 10 equally spaced bins along the x-axis 
between the minimum and maximum values of data.

 Bins are displayed as rectangles such that the height of each rectangle 
indicates the number of elements in the bin. 

 If data is a vector, then one histogram is created.

 If data is a matrix, then a histogram is created separately for each column. 

 Each histogram plot is displayed on the same figure with a different color.

 hist(data,nbins) sorts data into the number of bins specified 
by nbins.

 hist(data,xcenters)

 The values in xcenters specify the centers for each bin on the x-axis.



hist function: Example
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hist function: Example
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>> hist(reshape(X,1,prod(size(X))))

>> X = randi(6,1,10)

X =

4     2     4     5     2     1     2     2     3     4

>> hist(reshape(X,1,prod(size(X))),1:6)

>> grid on

1 2 3 4 5 6
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X  Uniform({1,2,…,6}) 
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[N, x] = hist(reshape(X,1,prod(size(X))),1:6)

bar(x,N)

Grid on

fr
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X = randi(6,20,10)



histc vs hist
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 N = hist(U,centers)

 Bins’ centers are defined by the vector centers.
 The first bin includes data between -inf and the first center and the last bin includes 

data between the last bin and inf.

 N(k) count the number of entries of vector U whose values falls inside the 
kth bin.

 N = histc(U,edges)

 Bins’ edges are defined by the vector edges.

 N(k) count the value U(i) if 
edges(k) ≤ U(i) < edges(k+1).  

 The last (additional) bin will count any values of U that match 
edges(end).  

 Values outside the values in edges are not counted.  

 May use -inf and inf in edges.

 [N,BIN_IND] = histc(U,EDGES) also returns vector 
BIN_IND indicating the bin index that each entry in U sorts into.  



Example: histc

13

>> p_X = [1/6 1/3 1/2];

>> F_X = cumsum(p_X)

F_X =

0.1667    0.5000    1.0000

>> U = rand(1,5)

U =

0.2426    0.9179    0.9409    0.1026    0.8897

>> [dum,V] = histc(U,[0 F_X])

dum =

1     1     3     0

V =

2     3     3     1     3



Relative Frequency
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rf = N/prod(size(X))

bar(x,rf)

grid on

stem(x,rf,'filled','LineWidth',1.5)

grid on

x x
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With larger number of samples
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rf = N/prod(size(X))

bar(x,rf)

grid on

stem(x,rf,'filled','LineWidth',1.5)

grid on
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X = randi(6,100,100);



20-Sided Dice
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Dice in Dungeons & Dragons
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 A fantasy tabletop role-playing game (RPG) 

 First published in 1974

 Widely regarded as the beginning of modern role-playing 

games and the role-playing game industry

http://en.wikipedia.org/wiki/File:Dice_(typical_role_playing_game_dice).jpg

http://en.wikipedia.org/wiki/Dungeons_%26_Dragons

D&D uses polyhedral dice to resolve random 

events. These are abbreviated by a ‘d’ followed by 

the number of sides. Shown counter-clockwise 

from the bottom are: d4, d6, d8, d10, d12 and d20 

dice.

http://en.wikipedia.org/wiki/File:Dice_(typical_role_playing_game_dice).jpg
http://en.wikipedia.org/wiki/Dungeons_&_Dragons


D20 Bowl Set
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[http://geekologie.com/2014/09/dungeons-dragons-approved-d20-serving-bo.php]



X  binomial(10,0.3)
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Generate X 200 times. Put the 

results in a table of size 2010

Flip an unfair coin 10 times. (The probability of getting heads for each time is 0.3.)

Count the number of heads. 

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

n p



Histogram: X  binomial(10,0.3)
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[N, x] = hist(reshape(X,1,prod(size(X))),0:10)
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Relative Freq.: X  binomial(10,0.3)

21

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

rf = N/prod(size(X))

bar(x,rf)

grid on

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

stem(x,rf,'filled','LineWidth',1.5)

grid on

x x

re
la

ti
ve

 f
re

qu
en

cy

re
la

ti
ve

 f
re

qu
en

cy



pmf for X  binomial(10,0.3)
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𝑝𝑋 𝑥 =
10
𝑥

0.3𝑥 1 − 0.3 10−𝑥
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p = binopdf(x,10,0.3)

stem(x,p,'k','filled','LineWidth',1.5); grid on

x
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x

pmf

Relative freq.
X = binornd(10,0.3,20,10);



X  binomial(10,0.3)
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Bernoulli Trials
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010001011000101110000101011100…

The number of 1s in n trials is a 

binomial random variable with 

parameter (n,p)

The number of trials 

until the next 1 is a 

geometric1 random 

variable.

The number of 0 

until the next 1 is a 

geometric0 random 

variable.

In the limit, as

n  and p  0

while  np = ,

The number of 1s is a Poisson 

random variable with parameter 
= np.



Publishing Success

26

 Publishing success is so unpredictable that even if our novel 
is destined for the best-seller list, numerous publishers could miss 
the point and send those letters that say thanks but no thanks.

 In fact, many books destined for great success had to survive not 
just rejection, but repeated rejection.

 J. K. Rowling’s first Harry Potter manuscript was rejected by 
nine publishers.

 Lesson: Suppose four publishers have rejected your manuscript. 

 Your intuition and the bad feeling in the pit of your stomach might say 
that the rejections by all those publishing experts mean your 
manuscript is no good.

 We all know from experience that if several tosses of a coin come up 
heads, it doesn’t mean we are tossing a two-headed coin.



Box Office Success
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 Hollywood’s unpredictability

 Does luck play a far more important role in box office success 
(and failure) than people imagine?

 There are reasons for a film’s box office performance

 but those reasons are so complex and the path from green light to 
opening weekend so vulnerable to unforeseeable and uncontrollable 
influences that 

 educated guesses about an unmade film’s potential aren’t much better 
than flips of a coin.

 Studio executive David Picker:

 “If I had said yes to all the projects I turned down, and no to all the 
other ones I took, it would have worked out about the same.”



Don’t give up
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Successful people in every field are almost universally members 

of a certain set—the set of people who don’t give up.



Bernoulli Trials
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010001011000101110000101011100…

The number of 1s in n trials is a 

binomial random variable with 

parameter (n,p)

The number of trials 

until the next 1 is a 

geometric1 random 

variable.

The number of 0 

until the next 1 is a 

geometric0 random 

variable.

In the limit, as

n  and p  0

while  np = ,

The number of 1s is a Poisson 

random variable with parameter 
= np.
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Poisson Approximation
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 Consider n Bernoulli trials.

 Assume success probability for each trial is 1/n.

 #successes 1P 

 #successes 1P 

 #successes 0P 
 #successes 2P 

 #successes 3P 

1
0.3679

e


1
1 0.6321

e
 

1
0.1839

2e


1

3!e

 

1
#successes ~ binomial ,

Poisson 1

n
n

 
 
 


when n is large

1 1

! !

k

e
k k e


  






Benford's law: Introduction
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 Consider the distribution of the first digit in real-life sources of data.

 Suppose you start reading through a particular issue of a publication like 
the New York Times or The Economist, and each time you encounter any 
number (the amount of donations to a particular political candidate, the 
age of an actor, the number of members of a union, and so on), you 
record the first digit of that number. Possible first digits are 1, 2, 3, … , 
or 9. In the long run, how frequently do you think each of these nine 
possible first digits will be encountered?

X = randi(1e6,1e5,1);

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

First Digit

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

560447

845196

901480

639879

449454

41875

365825

41551

976613

706264

164932

88515

452648

820554

 It might be quite natural to 
assume that all digits are equally 
likely to show up in most random 
data sets.

For example, the first digit of 110,364 is a 1.



Benford's law: Introduction
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 One of the following columns contains 

the value of the closing stock index as 

of Aug. 8, 2012 for each of a number of 

countries, and the other column 

contains fake data obtained with a 

random number generator. 

 Just by looking at the numbers, without 

considering context, can you tell which 

column is fake and which is real?



Benford's law: Introduction
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 Examination of the foregoing lists of 

numbers shows that 

the first column conforms much more 

closely to Benford’s Law than does the 

second column. 

 In fact, the first column is real, whereas 

the second one is fake. 

real fake
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Benford's law
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 The distribution of the first digit in many (but not all) real-life 
sources of data.

 Named after an American physicist Frank Benford, who stated it in 
1938, although it had been previously stated by Simon Newcomb
in 1881.

 There is a large bias towards the lower digits, so much so that 
nearly one-half of all numbers are expected to start with the digits 
1 or 2.

 
10

1
log 1 , 1,2,3, 9,

0, otherwise.

X

x
x

p x

  
  

  
 



1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Zero is inadmissible as a first digit.

The signs of negative numbers are ignored.

[Benford, “The law of anomalous numbers”, Proceedings of the American 

Philosophical Society, vol. 78, pp. 551–572, 1938.]

1  is the most likely first digit with a probability of about  30%  rather 

than the  11.1%  we would get if all nine digits were equally likely.

which means that there are nine 

possible first digits (1, 2, . . . , 9). 



Benford's law
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 Applicable to a wide variety of data sets, including electricity 

bills, street addresses, stock prices, population sizes, death 

rates, lengths of rivers, physical and mathematical constants.

 It tends to be most accurate when values are distributed 

across multiple orders of magnitude.

 Today, Benford's law is routinely applied in several areas in 

which naturally occurring data arise. 

 Perhaps the most practical application of 
Benford's law is in detecting fraudulent
data (or unintentional errors) in accounting 
reports, and in particular to detect fraudulent 
tax returns.

[http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118152859.html]

An 

application 

pioneered by 

Prof. Mark 

Nigrini

(http://ww

w.nigrini.co

m/). 
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Generating Discrete RV in MATLAB
clear all; close all;

S_X = [1 2 3 4]; p_X = [1/2 1/4 1/8 1/8]; n = 1e6;

SourceString = randsrc(1,n,[S_X;p_X]);

rf = hist(SourceString,S_X)/n; % Ref. Freq. calc.

stem(S_X,rf,'rx','LineWidth',2) % Plot Rel. Freq.

hold on

stem(S_X,p_X,'bo','LineWidth',2) % Plot pmf

xlim([min(S_X)-1,max(S_X)+1])

legend('Rel. freq. from sim.','pmf p_X(x)')

xlabel('x')

grid on

SourceString = datasample(S_X,n,'Weights',p_X);

Alternatively, we can also use

[GenRV_Discrete_datasample_Ex.m]



Example
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 1,2,3,4X   
 

1 , 1,
2

1 , 2,
4

1 , 3,4
8

0, otherwise

X

x

x
p x

x

 

 

 
 



Approximately 50% are number ‘1’s

2 1 1 2 1 4 1 1 1 1

1 1 4 1 1 2 4 2 2 1

3 1 1 2 3 2 4 1 2 4

2 1 1 2 1 1 3 3 1 1

1 3 4 1 4 1 1 2 4 1

4 1 4 1 2 2 1 4 2 1

4 1 1 1 1 2 1 4 2 4

2 1 1 1 2 1 2 1 3 2

2 1 1 1 1 1 1 2 3 2

2 1 1 2 1 4 2 1 2 1

[GenRV_Discrete_finite_support.m]



Example
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n = 100 n = 106


