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 X is a discrete random variable if it has a countable support.

 Recall that countable sets include finites set and countably

infinite sets.

 For X whose support is uncountable, there are two types:

 Continuous random variable

 Mixed random variable



Probabilities involving discrete RV
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 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

     
1

1 2 6
6

P X P X P X      

𝒙 𝑷 𝑿 = 𝒙

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 

variable

 Probability mass function 

(PMF):

 In general,

 Stem plot:

 
1/ 6, 1,2,3,4,5,6,

0, otherwise.
X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 



Probabilities involving discrete RV
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To find P[some condition(s) on X] 
from the pmf pX(x) of X:

1. Find the support of X.

2. Look only at values x inside the 
support. 
Find all x that satisfies the 
condition(s).

3. Evaluate the pmf at x found in 
the previous step.

4. Add the pmf values from the 
previous step.

Back to the dice roll 
example. Suppose we want 
to find P[X > 4].

1. The support of X is
{1,2,3,4,5,6}.

2. The members which 
satisfies the condition 
“>4” is 5 and 6.

3. The pmf values at 5 
and 6 are all 1/6.

4. Adding the pmf values 
gives 2/6 = 1/3.



Probabilities involving discrete RV
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 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

     
1

1 2 6
6

P X P X P X      

𝒙 𝑷 𝑿 = 𝒙

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 

variable

 Probability mass function 

(PMF):

 In general,

 Stem plot:

 
1/ 6, 1,2,3,4,5,6,

0, otherwise.
X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 



X  Uniform({1,2,…,6}) 
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Roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Again, roll a fair dice. Record the result.

Generate X 200 times. Put the 

results in a table of size 2010



randi function
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 Generate uniformly distributed pseudorandom integers

 randi(imax) returns a scalar value between 1 and 
imax. 

 randi(imax,m,n) and randi(imax,[m,n])
return an m-by-n matrix containing pseudorandom integer 
values drawn from the discrete uniform distribution on the 
interval [1,imax]. 

 randi(imax) is the same as randi(imax,1).

 randi([imin,imax],...) returns an array 
containing integer values drawn from the discrete uniform 
distribution on the interval [imin,imax]. 

We have already seen the rand and randn functions.



hist function
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 Create histogram plot

 hist(data) creates a histogram bar plot of data.  

 Elements in data are sorted into 10 equally spaced bins along the x-axis 
between the minimum and maximum values of data.

 Bins are displayed as rectangles such that the height of each rectangle 
indicates the number of elements in the bin. 

 If data is a vector, then one histogram is created.

 If data is a matrix, then a histogram is created separately for each column. 

 Each histogram plot is displayed on the same figure with a different color.

 hist(data,nbins) sorts data into the number of bins specified 
by nbins.

 hist(data,xcenters)

 The values in xcenters specify the centers for each bin on the x-axis.



hist function: Example
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hist function: Example
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>> hist(reshape(X,1,prod(size(X))))

>> X = randi(6,1,10)

X =

4     2     4     5     2     1     2     2     3     4

>> hist(reshape(X,1,prod(size(X))),1:6)

>> grid on

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4



X  Uniform({1,2,…,6}) 
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[N, x] = hist(reshape(X,1,prod(size(X))),1:6)

bar(x,N)

Grid on

fr
eq

ue
nc

y

x
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40
X = randi(6,20,10)



histc vs hist
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 N = hist(U,centers)

 Bins’ centers are defined by the vector centers.
 The first bin includes data between -inf and the first center and the last bin includes 

data between the last bin and inf.

 N(k) count the number of entries of vector U whose values falls inside the 
kth bin.

 N = histc(U,edges)

 Bins’ edges are defined by the vector edges.

 N(k) count the value U(i) if 
edges(k) ≤ U(i) < edges(k+1).  

 The last (additional) bin will count any values of U that match 
edges(end).  

 Values outside the values in edges are not counted.  

 May use -inf and inf in edges.

 [N,BIN_IND] = histc(U,EDGES) also returns vector 
BIN_IND indicating the bin index that each entry in U sorts into.  



Example: histc
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>> p_X = [1/6 1/3 1/2];

>> F_X = cumsum(p_X)

F_X =

0.1667    0.5000    1.0000

>> U = rand(1,5)

U =

0.2426    0.9179    0.9409    0.1026    0.8897

>> [dum,V] = histc(U,[0 F_X])

dum =

1     1     3     0

V =

2     3     3     1     3



Relative Frequency
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rf = N/prod(size(X))

bar(x,rf)

grid on

stem(x,rf,'filled','LineWidth',1.5)

grid on

x x
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With larger number of samples

15

rf = N/prod(size(X))

bar(x,rf)

grid on

stem(x,rf,'filled','LineWidth',1.5)

grid on

x x

re
la

ti
ve

 f
re

qu
en

cy

re
la

ti
ve

 f
re

qu
en

cy

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

X = randi(6,100,100);



20-Sided Dice
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Dice in Dungeons & Dragons
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 A fantasy tabletop role-playing game (RPG) 

 First published in 1974

 Widely regarded as the beginning of modern role-playing 

games and the role-playing game industry

http://en.wikipedia.org/wiki/File:Dice_(typical_role_playing_game_dice).jpg

http://en.wikipedia.org/wiki/Dungeons_%26_Dragons

D&D uses polyhedral dice to resolve random 

events. These are abbreviated by a ‘d’ followed by 

the number of sides. Shown counter-clockwise 

from the bottom are: d4, d6, d8, d10, d12 and d20 

dice.

http://en.wikipedia.org/wiki/File:Dice_(typical_role_playing_game_dice).jpg
http://en.wikipedia.org/wiki/Dungeons_&_Dragons


D20 Bowl Set
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[http://geekologie.com/2014/09/dungeons-dragons-approved-d20-serving-bo.php]



X  binomial(10,0.3)

19

Generate X 200 times. Put the 

results in a table of size 2010

Flip an unfair coin 10 times. (The probability of getting heads for each time is 0.3.)

Count the number of heads. 

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

Again, flip an unfair coin 10 times. Count #H.

n p



Histogram: X  binomial(10,0.3)
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Relative Freq.: X  binomial(10,0.3)
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pmf for X  binomial(10,0.3)
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𝑝𝑋 𝑥 =
10
𝑥

0.3𝑥 1 − 0.3 10−𝑥
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stem(x,p,'k','filled','LineWidth',1.5); grid on
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x

pmf

Relative freq.
X = binornd(10,0.3,20,10);



X  binomial(10,0.3)
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Bernoulli Trials
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010001011000101110000101011100…

The number of 1s in n trials is a 

binomial random variable with 

parameter (n,p)

The number of trials 

until the next 1 is a 

geometric1 random 

variable.

The number of 0 

until the next 1 is a 

geometric0 random 

variable.

In the limit, as

n  and p  0

while  np = ,

The number of 1s is a Poisson 

random variable with parameter 
= np.



Publishing Success
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 Publishing success is so unpredictable that even if our novel 
is destined for the best-seller list, numerous publishers could miss 
the point and send those letters that say thanks but no thanks.

 In fact, many books destined for great success had to survive not 
just rejection, but repeated rejection.

 J. K. Rowling’s first Harry Potter manuscript was rejected by 
nine publishers.

 Lesson: Suppose four publishers have rejected your manuscript. 

 Your intuition and the bad feeling in the pit of your stomach might say 
that the rejections by all those publishing experts mean your 
manuscript is no good.

 We all know from experience that if several tosses of a coin come up 
heads, it doesn’t mean we are tossing a two-headed coin.



Box Office Success
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 Hollywood’s unpredictability

 Does luck play a far more important role in box office success 
(and failure) than people imagine?

 There are reasons for a film’s box office performance

 but those reasons are so complex and the path from green light to 
opening weekend so vulnerable to unforeseeable and uncontrollable 
influences that 

 educated guesses about an unmade film’s potential aren’t much better 
than flips of a coin.

 Studio executive David Picker:

 “If I had said yes to all the projects I turned down, and no to all the 
other ones I took, it would have worked out about the same.”



Don’t give up
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Successful people in every field are almost universally members 

of a certain set—the set of people who don’t give up.



Bernoulli Trials
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010001011000101110000101011100…

The number of 1s in n trials is a 

binomial random variable with 

parameter (n,p)

The number of trials 

until the next 1 is a 

geometric1 random 

variable.

The number of 0 

until the next 1 is a 

geometric0 random 

variable.

In the limit, as

n  and p  0

while  np = ,

The number of 1s is a Poisson 

random variable with parameter 
= np.
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Poisson Approximation
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 Consider n Bernoulli trials.

 Assume success probability for each trial is 1/n.

 #successes 1P 

 #successes 1P 

 #successes 0P 
 #successes 2P 

 #successes 3P 

1
0.3679

e


1
1 0.6321

e
 

1
0.1839

2e


1

3!e

 

1
#successes ~ binomial ,

Poisson 1

n
n

 
 
 


when n is large

1 1

! !

k

e
k k e


  






Benford's law: Introduction
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 Consider the distribution of the first digit in real-life sources of data.

 Suppose you start reading through a particular issue of a publication like 
the New York Times or The Economist, and each time you encounter any 
number (the amount of donations to a particular political candidate, the 
age of an actor, the number of members of a union, and so on), you 
record the first digit of that number. Possible first digits are 1, 2, 3, … , 
or 9. In the long run, how frequently do you think each of these nine 
possible first digits will be encountered?

X = randi(1e6,1e5,1);

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

First Digit

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

560447

845196

901480

639879

449454

41875

365825

41551

976613

706264

164932

88515

452648

820554

 It might be quite natural to 
assume that all digits are equally 
likely to show up in most random 
data sets.

For example, the first digit of 110,364 is a 1.



Benford's law: Introduction
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 One of the following columns contains 

the value of the closing stock index as 

of Aug. 8, 2012 for each of a number of 

countries, and the other column 

contains fake data obtained with a 

random number generator. 

 Just by looking at the numbers, without 

considering context, can you tell which 

column is fake and which is real?



Benford's law: Introduction
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 Examination of the foregoing lists of 

numbers shows that 

the first column conforms much more 

closely to Benford’s Law than does the 

second column. 

 In fact, the first column is real, whereas 

the second one is fake. 

real fake
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Benford's law
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 The distribution of the first digit in many (but not all) real-life 
sources of data.

 Named after an American physicist Frank Benford, who stated it in 
1938, although it had been previously stated by Simon Newcomb
in 1881.

 There is a large bias towards the lower digits, so much so that 
nearly one-half of all numbers are expected to start with the digits 
1 or 2.
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1
log 1 , 1,2,3, 9,

0, otherwise.

X

x
x

p x
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0.35

Zero is inadmissible as a first digit.

The signs of negative numbers are ignored.

[Benford, “The law of anomalous numbers”, Proceedings of the American 

Philosophical Society, vol. 78, pp. 551–572, 1938.]

1  is the most likely first digit with a probability of about  30%  rather 

than the  11.1%  we would get if all nine digits were equally likely.

which means that there are nine 

possible first digits (1, 2, . . . , 9). 



Benford's law
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 Applicable to a wide variety of data sets, including electricity 

bills, street addresses, stock prices, population sizes, death 

rates, lengths of rivers, physical and mathematical constants.

 It tends to be most accurate when values are distributed 

across multiple orders of magnitude.

 Today, Benford's law is routinely applied in several areas in 

which naturally occurring data arise. 

 Perhaps the most practical application of 
Benford's law is in detecting fraudulent
data (or unintentional errors) in accounting 
reports, and in particular to detect fraudulent 
tax returns.

[http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118152859.html]

An 

application 

pioneered by 

Prof. Mark 

Nigrini

(http://ww

w.nigrini.co

m/). 
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Generating Discrete RV in MATLAB
clear all; close all;

S_X = [1 2 3 4]; p_X = [1/2 1/4 1/8 1/8]; n = 1e6;

SourceString = randsrc(1,n,[S_X;p_X]);

rf = hist(SourceString,S_X)/n; % Ref. Freq. calc.

stem(S_X,rf,'rx','LineWidth',2) % Plot Rel. Freq.

hold on

stem(S_X,p_X,'bo','LineWidth',2) % Plot pmf

xlim([min(S_X)-1,max(S_X)+1])

legend('Rel. freq. from sim.','pmf p_X(x)')

xlabel('x')

grid on

SourceString = datasample(S_X,n,'Weights',p_X);

Alternatively, we can also use

[GenRV_Discrete_datasample_Ex.m]



Example
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 1,2,3,4X   
 

1 , 1,
2

1 , 2,
4

1 , 3,4
8

0, otherwise

X

x

x
p x

x

 

 

 
 



Approximately 50% are number ‘1’s

2 1 1 2 1 4 1 1 1 1

1 1 4 1 1 2 4 2 2 1

3 1 1 2 3 2 4 1 2 4

2 1 1 2 1 1 3 3 1 1

1 3 4 1 4 1 1 2 4 1

4 1 4 1 2 2 1 4 2 1

4 1 1 1 1 2 1 4 2 4

2 1 1 1 2 1 2 1 3 2

2 1 1 1 1 1 1 2 3 2

2 1 1 2 1 4 2 1 2 1

[GenRV_Discrete_finite_support.m]



Example
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n = 100 n = 106


